terça-feira, 1 de junho de 2010

Matemática como ciência

Conceitos e tópicos
Lista de tópicos em matemática

Quantidades
Números

O estudo de quantidades começa com os números, primeiro os familiares números naturais, depois os inteiros, e as operações aritmética com eles, que é chamada de aritmética. As propriedades dos números inteiros são estudadas na teoria dos números, dentre eles o popular Último Teorema de Fermat. A teoria dos números também inclui dois grandes problemas que ainda não foram resolvidos: conjectura dos primos gêmeos e conjectura de Goldbach.

Conforme o sistema de números foi sendo desenvolvido, os números inteiros foram considerados como um subconjunto dos números racionais (frações). Esses, por sua vez, estão contidos dentro dos números reais, que são usados para representar quantidades contínuas. Números reais são parte dos números complexos. Esses são os primeiros passos da hierarquia dos números que segue incluindo quaterniões e octoniões.

Considerações sobre os números naturais levaram aos números transfinitos, que formalizam o conceito de contar até o infinito. Outra área de estudo é o tamanho, que levou aos números cardinais e então a outro conceito de infinito : os números Aleph, que permitem uma comparação entre o tamanho de conjuntos infinitamente largos.


Números naturais Números inteiros Números racionais Números reais Números complexos
π
Aritmética Constante matemática Número ordinal Número cardinal

Estrutura

Muitos objetos matemáticos, tais como conjuntos de números e funções matemáticas, exibem uma estrutura interna. As propriedades estruturais desses objetos são investigadas através do estudo de grupos, anéis, corpos e outros sistemas abstratos, que são eles mesmos tais objetos. Este é o campo da álgebra abstrata. Um conceito importante é a noção de vetor, que se generaliza quando são estudados os espaço vetorial em álgebra linear. O estudo de vetores combina três das áreas fundamentais da matemática: quantidade, estrutura e espaço.

Teoria de números Álgebra abstrata Álgebra linear Teoria da ordem Teoria de grafos Teoria de operadores

Espaço
Espaço matemático

O estudo do espaço se originou com a geometria - em particular, com a geometria euclidiana. Trigonometria combina o espaço e os números, e contém o famoso teorema de pitágoras. O estudo moderno do espaço generaliza essas ideias para incluir geometria de dimensões maiores, geometria não-euclidiana (que tem papel central na relatividade geral) e topologia. Quantidade e espaço juntos fazem a geometria analítica, geometria diferencial, e geometria algébrica.


Topologia Geometria Trigonometria Geometria diferencial Geometria fractal

Transformações

Entender e descrever uma transformação é um tema comum na ciência natural e cálculo foi desenvolvido como uma poderosa ferramenta para investigar isso. Então as funções foram criadas, como um conceito central para descrever uma quantidade que muda com o passar do tempo. O rigoroso estudo dos números reais e funções reais são conhecidos como análise real, e a análise complexa a equivalente para os números complexos.

A hipótese de Riemann, uma das mais fundamentais perguntas não respondidas da matemática, é baseada na análise complexa. Análise funcional se foca no espaço das funções. Uma das muitas aplicações da análise funcional é a Mecânica quântica. Muitos problemas levaram naturalmente a relações entre a quantidade e sua taxa de mudança, e esses problemas são estudados nas equações diferenciais. Muitos fenômenos da natureza podem ser descritos pelos sistemas dinâmicos; a teoria do caos descreve com precisão os modos com que muitos sistemas exibem um padrão imprevisível, porém ainda assim determinístico.


Cálculo Cálculo vetorial Equação diferencials Sistema dinâmico Teoria do caos

Fundações e métodos

Para clarificar as fundações da matemática, campos como a matemática lógica e a teoria dos conjuntos foram desenvolvidos, assim como a teoria das categorias que ainda está em desenvolvimento.

Matemática lógica Teoria dos conjuntos Teoria das categorias

Matemática discreta

Matemática discreta é o nome comum para o campo da matemática mais geralmente usado na teoria da computação. Isso inclui a computabilidade, complexidade computacional e teoria da informação. Computabilidade examina as limitações dos vários modelos teóricos do computador, incluindo o mais poderoso modelo conhecido - a máquina de Turing.


Combinatória Teoria dos conjuntos Teoria da computação Criptografia Teoria de grafos

Matemática aplicada

Matemática aplicada considera o uso de ferramentas abstratas de matemática para resolver problemas concretos na ciência, negócios e outras áreas. Um importante campo na matemática aplicada é a estatística, que usa a teoria das probabilidades como uma ferramenta e permite a descrição, análise e predição de fenômenos onde as chances tem um papel fundamental. Muitos estudos de experimentação, acompanhamento e observação requerem um uso de estatísticas.

Análise numérica investiga métodos computacionais para resolver eficientemente uma grande variedade de problemas matemáticos que são tipicamente muito grandes para a capacidade numérica humana; isso inclui estudos de erro de arredondamento ou outras fontes de erros na computação.


Física matemática
Mecânica dos fluidos
Análise numérica
Otimização

Teoria das probabilidades
Estatística
Matemática financeira
Teoria dos jogos

Fonte: www.wikipedia.com.br

Nenhum comentário:

Postar um comentário